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An Overview of Research Highlights and Research-Related Activities 
 
I. Research on Graph Theory 
 
A. Graph Factors  

Factors of graphs help you understand its structure, which is why it’s been the subject of many 
researchers. A factor of a graph 𝐺𝐺 is a spanning subgraph of 𝐺𝐺 which is not totally disconnected. A factor is 
called a degree-factor if some degree condition is imposed for each vertex of the factor. Among many early 
results on degree-factors, the 1-Factor Theorem by W. Tutte [A-1] and the [𝑓𝑓,𝑔𝑔]-factor Theorem by L. Lovasz 
[A-2] are critical.  

Akiyama and M. Kano [A-3] introduced a concept called component-factor of 𝐺𝐺 , in which each 
component of the factor is isomorphic to some graphs such as a path, a tree, a star, etc. The introduction of the 
concept of component-factors expanded the research on factors and factorization theory. Akiyama, Era, and 
Avis obtained the Path-Factor Theorem [A-4] using alternating paths. Akiyama and Kano [A-5] also obtained a 
necessary or sufficient condition for the existence of a 𝑃𝑃3-factor and 𝑃𝑃4-factor. As an application of the 𝑃𝑃3-factor, 
Akiyama and Kano [A-6] considered the problem of packing triominos into a truncated chessboard. 
Generalizing the latter, V. Chvátal [A-7] studied the problem of packing paths 𝑃𝑃3 into a given graph from an 
algorithmic point of view.  

A Hamilton cycle is a connected 2-fator. It was shown by Akiyama, M. Kobayashi and G Nakamura in 
[A-8] that there is a symmetric Hamilton cycles decomposition of 𝐾𝐾𝑛𝑛 that is not isomorphic to the Walecki 
decomposition  𝑊𝑊𝑛𝑛, for all odd 𝑛𝑛 > 7.  

In 1985, Akiyama and Kano published a review article of the previous work on factors and 
factorizations of graphs in the Journal of Graph Theory [A-9]. In 2007, they also published a book (under 
Springer [A-10]) titled “Factors and Factorizations of Graphs: Proof Techniques in Factor Theory,” which 
comprehensively summarizes the theory of factors and graph factorizations and organizes and explains the 
methods used to prove theorems on graph factors. This book is now cited in almost all recent papers on graph 
factors. 

  
B. 𝐺𝐺, �̅�𝐺 Series (Both 𝐺𝐺, �̅�𝐺 satisfies a condition 𝑃𝑃) 

Let P be a prescribed condition for any graph. In 1978, Akiyama and Harary [B-6] introduced a series 
of problems aimed to determine all graphs 𝐺𝐺 such that both 𝐺𝐺 and �̅�𝐺 (the complement of 𝐺𝐺) satisfy the given 
ondition P. Various results were obtained for the following P: n-connectedness [B-1], equal girth or 
circumference [B-2], self-complementary block [B-3], a specified number 𝑘𝑘  of endvertices [B-4], equal 
chromatic numbers [B-5], contraction critically 𝑘𝑘-connected [B-7], interval graphs [B-8], equi-eccentric graphs 
[B-9], etc. Research on 𝐺𝐺, �̅�𝐺 satisfying a common property P has some interesting applications. For example, a 
graph 𝐺𝐺 may represent a network of roads in a city, a distribution network, a sewerage system, or a nerve or 
vascular network in the human body. In this case, when a network 𝐺𝐺 fails with respect to the condition (function) 
P, then �̅�𝐺 can be used in place of 𝐺𝐺 (assuming �̅�𝐺 satisfies P).  
 
C. Linear Arboricity  

The linear arboricity of a graph is closely related to the design of a database retrieval system. A graph 
𝐺𝐺 is a linear forest in which each component is a path. Supposing that the edge set of 𝐺𝐺 is partitioned into 
subsets such that each one is a linear forest. Then the minimum number of subsets is defined as the linear 
arboricity of 𝐺𝐺, denoted by ℓ𝑎𝑎(𝐺𝐺). In 1976, Akiyama conjectured that the linear arboricity for 𝑟𝑟-regular graphs 
is ℓ𝑎𝑎(𝐺𝐺) = ⌈(𝑟𝑟 + 1)/2⌉ . This was proven to be true for cases 𝑟𝑟 = 3, 4 in his papers with 𝐺𝐺. Exoo and F. Harary 
[C-1, C-2, C-3, C-4]. Unfortunately, nearly half a century later, this conjecture remains unresolved for many 
cases, although many researchers have validated this conjecture for relatively small values of r.  

 
 

D. Path Chromatic Numbers and Conjecture on Maximum Induced Forests 
The four-color problem for map coloring has been a well-known driving force in the development of 

graph theory. In 1977, the proof of K. Appel, W. Haken, and J. Koch [D-1], with the help of computers, finally 
put an end to this difficult problem. However, their paper was more than a hundred pages long, and many graph 
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theorists are still yearning for a more graph-theoretic approach.  
Akiyama also joined in this search to find a simpler proof of the four-color theorem without the help of 

computers, which led him to introduce the generalized chromatic numbers (called path chromatic numbers). 
Akiyama, H. Era, M. Watanabe, and S. Gervacio [D-2] defined the path chromatic number as an extended 
concept of the chromatic number as follows: The k-path chromatic number 𝜒𝜒(𝐺𝐺;𝑃𝑃𝑘𝑘)  of a graph 𝐺𝐺  is the 
minimum number 𝑛𝑛 such that the point set of 𝐺𝐺 is partitioned into 𝑛𝑛 subsets, where the subgraph induced by 
each subset is a union of paths of order at most k, denoted by 𝜒𝜒(𝐺𝐺;𝑃𝑃𝑘𝑘). Then, 𝜒𝜒(𝐺𝐺;𝑃𝑃1) = 𝜒𝜒(𝐺𝐺),𝜒𝜒(𝐺𝐺;𝑃𝑃1)  ≧
 𝜒𝜒(𝐺𝐺;𝑃𝑃2)  ≧  ⋯  ≧  𝜒𝜒(𝐺𝐺;𝑃𝑃∞) holds. In this paper, it is shown that 𝜒𝜒(𝐺𝐺;𝑃𝑃∞) ≦ 2 for any outerplanar graph, and 
that a sequence of planar graphs 𝐺𝐺, such that 𝜒𝜒(𝐺𝐺;𝑃𝑃𝑘𝑘) = 4 for any integer 𝑘𝑘, can be constructed.  

Another parameter that can be generalized is the point-independent number of graph 𝐺𝐺, denoted by 
𝛽𝛽𝑜𝑜(𝐺𝐺). Based on the 4-color theorem, 𝛽𝛽𝑜𝑜(𝐺𝐺) ≧ ⌈𝑝𝑝

4
⌉ for a planar graph 𝐺𝐺 of order 𝑝𝑝. Extending the notion of a 

point - independent number, Akiyama and Watanabe defined the point-independence forest number 𝛽𝛽𝐹𝐹(𝐺𝐺) as 
the maximum cardinality of a subset of points in a graph 𝐺𝐺 such that the subgraph of 𝐺𝐺 induced by that subset 
is a forest. Akiyama and Watanabe conjectured that 𝛽𝛽𝐹𝐹(𝐺𝐺) ≧ ⌈𝑝𝑝

2
⌉ if 𝐺𝐺 is a planar graph of order 𝑝𝑝, and showed 

examples of graphs that achieve the lower bound for each 𝑝𝑝. Similarly, they conjectured that 𝛽𝛽𝐹𝐹(𝐺𝐺) ≧ ⌈5𝑝𝑝
8
⌉ if 𝐺𝐺 

is a planar bipartite graph of order 𝑝𝑝, and showed examples of a sequence of graphs that achieve the lower 
bound for each 𝑝𝑝 [D-3]. P. Erdös finds their conjecture interesting because, if it were proven to be true, then one 
can show that 𝛽𝛽𝑜𝑜(𝐺𝐺) ≧ ⌈𝑝𝑝

4
⌉ for a planar graph 𝐺𝐺 of order 𝑝𝑝, without using the 4-color theorem. 

 
 

E. Middle Graphs, Eccentric Graphs: Graph Equations 
Akiyama, T. Hamada and I. Yoshimura introduced the concept of middle graphs and showed their 

characterization. They studied the connectivity, the edge-connectivity, and arboricity [E-1, 2, 3] of a middle 
graph.  

The eccentric graph 𝐺𝐺𝑒𝑒 of 𝐺𝐺 is defined on the same set of vertices of 𝐺𝐺 and joining two vertices in 𝐺𝐺𝑒𝑒 
with an edge if and only if one of the vertices has maximum possible distance from the other in 𝐺𝐺. Akiyama, K. 
Ando and D. Avis studied miscellaneous properties of the eccentric graphs, and characterized graphs with 𝐺𝐺𝑒𝑒 =
𝐾𝐾𝑝𝑝, 𝐺𝐺𝑒𝑒 = 𝑝𝑝𝐾𝐾2 and 𝐺𝐺𝑒𝑒 = �̅�𝐺 [E-4, 5, 6]. Akiyama, T. Kodate and K. Matsunaga characterized graphs which are 
clusters in [E-7].  

In addition, Akiyama studied many graph equations together with S. Simic, Hamada, and others, which 
has led to numerous results [E-8-10]. In particular, they determined exactly 23 (𝐺𝐺,𝐻𝐻) solutions for the graph 
equation  𝐿𝐿(𝐺𝐺)������ = 𝐿𝐿(𝐻𝐻)[E-11]. 
 
F. Research-Related Activities 

Until the early 1970s, no research results on graph theory was ever presented in the Mathematical 
Society of Japan. In 1974, Akiyama presented his research on graph theory for the first time at the Mathematical 
Society of Japan. Since then, and in almost every succeeding year, he was able to present his results on graph 
theory at the Mathematical Society of Japan and at the Research Institute for Mathematical Analysis (in Kyoto 
University). In 1982 and 1990, he gave two special lectures on graph theory at the Applied Math Division of 
the Mathematical Society of Japan. Since then, the number of researchers in graph theory has gradually 
increased and the quality and quantity of research results have improved [F-1, F-2]. To this day, Akiyama 
continues to receive many invitations as plenary or keynote speaker in various international conferences on 
graph theory and combinatorics.  

Akiyama was the first person in Japan to be awarded a doctorate of science specializing in the area of 
graph theory. In 1979, he became the first Asian to serve as editor of the Journal of Graph Theory (published by 
Wiley), where he edited and reviewed many papers on graph theory for 18 years (until 1997). In 1986 and 1990, 
Akiyama organized the International Conference on Graph Theory in Japan, gathering about 300 participants 
including leading researchers like S. Hitotumatu. P. Erdös, R. Graham, B. Bollobas, V. Chvátal, N. Alon, V. Sos, 
E. Szemerédi, J. Urrutia, J. Harary, M. Deza, J. Pach, and L. Lovász [F-3, 4]. The proceedings of the said 
conference were published in a special issue of Discrete Math and Annals of Discrete Math [F-5]. Also in 1986, 
Akiyama launched Graphs and Combinatorics   a journal of graph theory and combinatorics published by 
Springer [F-6]. The journal has now grown into a high impact factor journal which publishes many high quality 
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research papers. 
 
II. Research on Discrete and Computational Geometry 
 
G. Existence on Disjoint Simplices and Noncrossing Edges of d-Dimensional Geometric Hypergraphs 
In 1985, Akiyama and N. Alon [G-1], showed the following theorem using the Ham-Sandwich theorem obtained 
from the Borsuk-Ulam theorem: Let 𝐴𝐴  be a set of 𝑑𝑑 ∙ 𝑛𝑛  points in 𝑅𝑅𝑑𝑑  and let 𝐴𝐴 = 𝐴𝐴1 ∪ 𝐴𝐴2 ∪ ⋯∪ 𝐴𝐴𝑑𝑑 , |𝐴𝐴𝑖𝑖| =
𝑛𝑛(1 ≦ 𝑖𝑖 ≦ 𝑑𝑑) be a direct sum partition of 𝐴𝐴, then there exist 𝑛𝑛 disjoint (𝑑𝑑 − 1)-dimensional simplices, each 
containing precisely one vertex from each  𝐴𝐴𝑖𝑖(1 ≦ 𝑖𝑖 ≦ 𝑑𝑑). Using P. Erdös’ result [G-2], the aforementioned 

theorem can be extended as follows: Any d-dimensional geometric hypergraph with 𝑛𝑛𝑑𝑑−�
1

ℓ𝑑𝑑−1
�  edges has 

ℓ edges that do not cross each other. This seems to be of interest to researchers, as evidenced by its number of 
citations, because it uses the Ham-Sandwich theorem for discrete objects, yet is shown to be applicable to d-
dimensional geometric hypergraphs.  
 
H.  Alternating Paths  

Assume that there are 2𝑛𝑛 points in the plane in general position colored with red or blue so that the 
number of red and blue points is the same. In this case, Akiyama and J. Urrutia [H-1] showed an algorithm in 
O�𝑛𝑛2� -time to determine if there exists an alternating path connecting red and blue points which does not 
intersect. They also presented a specific procedure for constructing such a non-intersecting alternate path, which 
is useful in many matching problems. 
 
I.  Balanced Coloring for Lattice Points 

Consider a set 𝑃𝑃𝑛𝑛 consisting of 𝑛𝑛 lattice points in the 2-dimensional coordinate plane. The 𝑚𝑚-coloring 
of 𝑃𝑃𝑛𝑛 is the partition 𝑃𝑃𝑛𝑛 = 𝑆𝑆1 ∪ 𝑆𝑆2 ∪⋯∪ 𝑆𝑆𝑚𝑚. A balanced m-coloring of 𝑃𝑃𝑛𝑛 means that for any line 𝐿𝐿 parallel to 
the coordinate axes, the number of elements in 𝑆𝑆ℓ on 𝐿𝐿 and the number of elements in 𝑆𝑆𝑘𝑘 on 𝐿𝐿 are either equal 
or differ by one, for any ℓ,𝑘𝑘(1 ≦ ℓ,𝑘𝑘 ≦ 𝑚𝑚) . Akiyama and J. Urrutia [I-1] showed, using König’s 1-
factorization theorem for regular bipartite graphs, that for any 𝑚𝑚 (2 ≦ 𝑚𝑚 ≦ 𝑛𝑛), there exists a balanced 𝑚𝑚-color 
of 𝑃𝑃𝑛𝑛. This result was extended to the problem of balanced coloring for higher-dimensional lattice point sets and 
was shown to be applicable to block designs. 
 
J.  Purely Recursive k-dissections of Polygons 

The problem of dissecting polygons has a long history [J-1]. Given a polygon 𝑃𝑃, we say that D is a 𝑘𝑘-
dissection of 𝑃𝑃  if it is a dissection of 𝑃𝑃  into 𝑛𝑛  pieces {𝑃𝑃1,𝑃𝑃2,⋯ ,𝑃𝑃𝑛𝑛} , which can be rearranged to form 𝑘𝑘 
polygons similar to 𝑃𝑃 of different sizes. 𝐷𝐷 is a purely recursive 𝑘𝑘-dissection of 𝑃𝑃 if 𝐷𝐷 is a 𝑘𝑘-dissection and is a 
cut such that the pieces of 𝑃𝑃 can be rearranged to form 2, 3, ⋯ ,𝑘𝑘  successive polygons similar to 𝑃𝑃. Akiyama, 
T. Sakai, and J. Urrutia [J-2] showed the existence of recursive k-dissections for arbitrary triangles, 
quadrilaterals, pentagons, hexagons, and other arbitrary regular polygons. Moreover, if 𝑃𝑃 is a square, Akiyama, 
Nakamura, A. Nozaki, K. Ogawa and Sakai [J-3, 4] constructed a purely recursive 𝑛𝑛-dissection of 𝑃𝑃 with 2𝑛𝑛 +
5 pieces, and proved that this dissection has the smallest number of pieces. 
 
K.  Distances between Vertices of a Polyhedron and a Polytope 

Let P be a polyhedron with 𝑣𝑣 vertices, labeled  𝑃𝑃1,  𝑃𝑃2,⋯ ,  𝑃𝑃𝑣𝑣. Akiyama and I. Sato [K-1] proved that 
∑�𝑃𝑃𝑖𝑖𝑃𝑃𝑗𝑗�

2 = 𝑣𝑣2  for any regular 𝑛𝑛 -dimensional polytope (𝑛𝑛 ≧ 2)  with 𝑣𝑣  vertices 𝑃𝑃1,  𝑃𝑃2,⋯ ,  𝑃𝑃𝑣𝑣  inscribed in a 
unit 𝑛𝑛-sphere, where the summations is taken under 1 ≦ 𝑖𝑖 < 𝑗𝑗 ≦ 𝑣𝑣. Note that this result is dependent only on 
the number of vertices of P and not its dimension. Furthermore, they showed in [K-2] the upper and lower 
bounds antipodal distance of a Wythoffian polytopes. 
 
L.  Research-Related Activities (JCDCG) 

In 1997, Akiyama organized the first Japan Conference on Discrete and Computational Geometry 
(JCDCG) in Tokyo. Since then, the JCDCG has been held annually around Asia except in 2008 and 2020. The 
25th JCDCG conference was held in Bali, Indonesia last in 2023. Akiyama has served as the conference chair 
(or conference co-chair) from the first to the 25th conference. The papers presented at each conference have 
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been carefully reviewed and sixteen issues of proceedings have been published by Lecture Notes in Computer 
Science, Computational Geometry: Theory and Applications, Graphs and Combinatorics, Thai J. Math and J. 
Information Processing, among others. JCDCG is now regarded as a reputable international conference, with 
regular attendees from CCCG in Canada and ECG in Europe. 
 
 
 
III.  Polygons, Polyhedra, and Polytopes 
 
M. Tile-Maker 

Akiyama has studied various properties of Conway tiles [M-1, 2]. A polyhedron (including a dihedron) 
𝑃𝑃 is a tile-maker if any net 𝑁𝑁 of 𝑃𝑃 is a tile. That is, the plane can be tessellated with copies of 𝑁𝑁. Akiyama [M-
2, 3] determined all polyhedra (including dihedra) that are tile-makers using the Conway Criterion. The 
simplicity of this result has since gained the interest of mathematics educators and students. Akiyama also 
examined which among the 17 types of periodic plane tiling could be constructed [M-2]. S. Langerman and A. 
Winslow [M-4] later on extended these results to determine all tile-makers for flat closed-surfaces such as torus, 
klein bottle, and projective plane using the Gauss-Bonnet theorem. 

  
N.  Tessellation Polyhedra 

In relation to the tile-maker problem, Akiyama, etc. began investigating all tessellating polyhedra. 
Among the infinitely many convex polyhedra, there are some whose faces are all regular polygons, or RFP, 
short for “regular-faced polyhedra.” 

A polyhedron P is called a tessellation polyhedron if at least one of its e-nets (nets obtained by cutting 
P along its edges) tiles the plane. Akiyama, S. Langerman. G. C. Shephard etc. [N-1] proved that there are 
exactly 23 tessellation polyhedra with RFPs. Since there are astronomically many different e-nets of each RFP, 
for example, the Johnson polyhedron J44 has 5, 295, 528, 588 different e-nets, the team relied on a computer to 
check which e-nets are tiles, making use of the Conway criterion.    
 
O.  Reversibility (Hinged Rotational Equi-Decomposability) 

Polygons 𝑃𝑃 and 𝑄𝑄 are said to be equi-decomposable if 𝑃𝑃 can be cut into a finite number of pieces, which 
can be rearranged to form 𝑄𝑄. 𝑃𝑃 and 𝑄𝑄 are equi-decomposable if and only if P and Q have the same area, a known 
result that was proven independently by three mathematicians during the late 19th century, namely, F. Bolyai 
[O-1], P. Gerwien [O-2], and W. Wallace [O-3] using a constructive approach. D. Hilbert's well-known problem 
on equi-decomposability of a tetrahedra of the same base and same height was solved by M. Dehn [O-4] by 
defining Dehn invariants for polyhedra and showing counterexamples. 

In 1907, H. Dudeney proposed the following problem: If 𝑃𝑃 and Q have the same area, where 𝑃𝑃 is an 
equilateral triangle and 𝑄𝑄 is a square, is it possible to dissect 𝑃𝑃 into several pieces and rearrange them to form 
Q? [O-5]. Dudeney’s technique is to cut an equilateral triangle into four pieces, attach a “hinge” to the vertex 
of each piece, connect the pieces in a chain, and then rearranged the pieces to form a square. In this case, the 
perimeter and interior of the equilateral triangle and square are interchanged (often called the inside-out 
property). Akiyama and Nakamura [O-6] extended this concept and defined a pair of polygons 𝑃𝑃 and 𝑄𝑄  to be 
reversible if there is a hinged transformation between 𝑃𝑃  and 𝑄𝑄  satisfying the inside-out property. They 
specifically determined reversible pairs for arbitrary triangles, squares, and pentagons, apart from equilateral 
triangles and squares [O-7, 9, 10, 11, 12, 13]. Akiyama and Matsunaga extended the notion of transformation 
not only to polygons but also to pairs of arbitrary figures surrounded by curves [O-8]. Not only that, Akiyama 
with H. Seong also showed an algorithm for determining whether a given polygonal pair is reversible or not [O-
14, 15]. Akiyama, Matsunaga, and S. Langerman [O-16] showed that a pair of non-overlapping nets of any 
polyhedron is reversible. The converse of this theorem is also true as shown in another paper by Akiyama, E. 
Demaine, and S. Langerman [O-17, M-2]. In other words, these results prove that a reversible pair is, in fact, a 
non-overlapping net of some common polyhedra. This puts an end to the theory of reversibility, originally 
developed from the Haberdasher's Puzzle. 
 
P.  Minimum Perimeter Nets for the Platonic Solids 

Determining a net with the minimum perimeter length (MPL) for a given polyhedron is reduced to a 
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problem of finding the minimum Steiner tree spanning all vertices of the polyhedron. Akiyama, X. Chin, and 
M. J. Ruiz [P-1] found the nets with minimum perimeter lengths (NMPL) of Platonic solids by using Melzak’s 
Algorithm for solving the minimum Steiner tree problem. The minimum perimeter lengths of unit Platonic 
solids are given below: 
MPL of a unit regular tetrahedron is 2√7  (≒ 5.29150),  
MPL of a unit cube is 2�2√3 + 3�  (≒ 12.92820) 
MPL of unit regular octahedron is 2√19  (≒ 8.71780) 
MPL of unit regular dodecahedron is 37.19729 and  
MPL of unit regular icosahedron is 2�√37 + 2√3�  (≒ 19.09370). 
 
Q.  Element Numbers of Polyhedral Families 

H. Minkowski [Q-1] showed that there are only five types of parallelohedra (called also Fedorov's 
polyhedra) that can fill space only by parallel translations (assuming that those congruent by affine 
transformation are in the same family). Akiyama defined the number of elements for a set of polyhedra as 
follows: Let 𝛴𝛴,𝛺𝛺  be a set of polyhedra. If any element of 𝛴𝛴 can be composed of a finite number of elements of 
𝛺𝛺, then 𝛺𝛺 is called an element set of 𝛴𝛴. That is, ∀𝑃𝑃 ∈ 𝛴𝛴，𝑃𝑃 = ⋃ 𝑛𝑛𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖∈ℤ  (ℤ is the finite set of integers, 0 ≦ 𝑛𝑛𝑖𝑖 ∈
ℤ,  𝜎𝜎𝑖𝑖 ∈ 𝛺𝛺.) The element number is the smallest number of the size of the element set 𝛺𝛺 of 𝛴𝛴. Akiyama, with 
Ikuro Sato and others, determined the element number for several important families of polyhedra, such as the 
family of parallelohedra, the family of regular polyhedra, and the family of regular polytopes, using Dehn 
invariants and other methods [Q-2, 3, 4, 5]. More importantly, they secured a patent for the pentadron, the atom 
(element) of a parallelohedra whose element number is 1. In addition, the element number for the family of 92 
Johnson Zalgaller polyhedra is conjectured to be 33. 
 
R．Reversibility of Polyhedra（Hinged-Transformation with Inside-out Properties）  

Akiyama extended the concept of reversibility for two-dimensional figures to three-dimensional 
polyhedra. By considering the Voronoi domains of face-centered cubic (FCC), body-centered cubic (BCC), and 
hexagonal closest packing (HCP) lattices, Akiyama, Sato, et al. [R-1, 2] showed that any two parallelohedra can 
be reversible. Since this study is closely related to the crystal structure and the mechanism of phase 
transformation, it also got the attention of those studying chemistry and crystallography [R-3]. 
 
S.   Universal Measuring Box 

It has been known since the Edo period that by using a box with volume 6ℓ, one can accurately pump 
out 1ℓ, 2ℓ, ⋯ , 6ℓ of water. An unmarked box that can pump out 1ℓ, 2ℓ,⋯ ,𝑛𝑛ℓ  of water after dipping it into a 
water barrel exactly once is called a universal measuring n-box (or simply an 𝑛𝑛-box). Various shapes of universal 
measuring boxes have been studied in [S-1]. An 𝑛𝑛-box with base B is called orthogonal type if each face other 
than B is orthogonal to its base B. Akiyama, H. Fukuda, C. Nara, T. Sakai and J. Urrutia. [S-2] found two 
orthogonal 41-boxes with triangular bases, and a non-orthogonal 127-box with a triangular base. Among all 𝑛𝑛-
boxes of this type, 𝑛𝑛 = 127 is the maximum. It was also proved in [S-1] that there exist orthogonal 858-boxes 
with quadrangular bases.   
 

 
 

IV.  Game, Knot and Puzzle 
 
T. Nim-like Games 

Akiyama and G. Nakamura investigated in finding winning strategies for many recreational games like 
sliding Puzzle, Peg Solitaire Nim Game, etc. and published a book [U-1] from Morikita Publishing Co. in 1998. 
T. Ooya and Akiyama introduced in [T-2] a few games in which binary and Fibonacci expansions of numbers 
play a prominent role for binding winning strategies.  

 
 

U. Möbius Flowers  
Bisecting conjoined Möbius bands along each centerline, some of them end up as interlocking hearts, 
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while the rest end up as two separated hearts. What indicators allow us to differentiate between the two cases? 
Akiyama etc. revealed in [K-2, U-1] math behind and generalized the number of conjoined Möbius 

bands to any natural number greater than 2. 
 
 

V.  Dudeney’s Round Table Problem  
In 1905, Dudeney [V-1] proposed the Round Table Problem as follows: “Seat the same 𝑛𝑛 persons at a 

round table on (𝑛𝑛 − 1)(𝑛𝑛 − 2) 2⁄  occasions so that no person shall ever have the same two neighbours twice. 
This is equivalent to saying that every person must sit once, and only once, between every possible pair.”  

The problem is equivalent to asking for a set of Hamilton cycles in the complete graph 𝐾𝐾𝑛𝑛 with the 
property that every path of length two lies on exactly one of the cycles. M. Kobayashi, J. Akiyama and G. 
Nakamura [W-2] gave a solution for the problem when 𝑛𝑛 = 𝑝𝑝 + 2, where 𝑝𝑝 is an odd prime number such that 
2 is the square of a primitive root of 𝐺𝐺𝐺𝐺(𝑝𝑝), and 𝑝𝑝 ≡ 3 (𝑚𝑚𝑚𝑚𝑑𝑑 4). 
 
W.  Other Research-Related Works 

In 1995, Akiyama planned the publication (via Asakura Publishing) of a series of lectures on finite 
discrete mathematics. He co-authored the first volume with R. L. Graham [W-1] titled “Introduction to Discrete 
Mathematics” and wrote the second volume titled “Frontiers of Graph Theory” [W-2]. In 2020, Akiyama 
published “Frontiers of Discrete Geometry” with Kindai Kagakusha (Modern Science) [W-3].  

In 2007, the Akiyama-Chvátal Sixtieth Birthday Commemorative International Conference took place 
at Kyoto University Clock Tower Hall. A book titled “Computational Geometry and Graph Theory, ―The 
Akiyama-Chvátal Festschrift,” edited by D. Avis, A. Bondy, M. Kano, and N. Katoh was published by Springer 
[L-9]. 

In 2015, Akiyama and Matsunaga published “Treks into Intuitive Geometry ― The World of Polygons 
and Polyhedra” in Springer [M-2]. In less than a decade since its release, many significant results in this field 
were obtained, and so an updated second edition is published in 2024.  

As of November 2023, Akiyama has authored 182 papers with more than 1600 citations, which have 
been read by at least 36,000 people worldwide (source: Research Gate).  
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